Microalgae: BFS fuel plant plankton in Alicante

crude vegetable oil, diester, bio-ethanol or other biofuels, or fuel of vegetable origin ...
Christophe
Moderator
Moderator
posts: 79323
Registration: 10/02/03, 14:06
Location: Greenhouse planet
x 11043




by Christophe » 02/03/11, 23:20

Well seen bernard, in the same genre there was "Carbon Sciences" some time ago: https://www.econologie.com/carburant-par ... -4234.html

https://www.econologie.com/forums/recyclage- ... t9275.html

But at the time it was a "concept" ...
0 x
Christophe
Moderator
Moderator
posts: 79323
Registration: 10/02/03, 14:06
Location: Greenhouse planet
x 11043




by Christophe » 03/05/11, 15:22

A video from TF1 from 2007 on, a priori, the same plant / process (biofuel system): https://www.econologie.com/micro-algues- ... -3438.html ou http://www.youtube.com/watch?v=J2FmaZ_l68k
0 x
dedeleco
Econologue expert
Econologue expert
posts: 9211
Registration: 16/01/10, 01:19
x 10




by dedeleco » 03/05/11, 15:54

A concept that nature has used for 2,7 billion years to remove CO2 and release O2 which allows us to live !!!

O2 was a harmful pollution of cyanobacteria for two billion years before the multicellular life invented 600million years ago thanks to O2 !!

So luckily we live with this concept without knowing it !!
0 x
dedeleco
Econologue expert
Econologue expert
posts: 9211
Registration: 16/01/10, 01:19
x 10




by dedeleco » 17/01/12, 00:06

We know the microalgae that make oil directly Botryococcus braunii known as a botryococcenes, which fill their body of oil with 85% of their dry weight, then buried in the ground, ideal for making oil, but they grow 8 times more slowly than the other algae, which should allow to use them in a little less hurry:
http://www.physorg.com/news187634357.html
http://www.physorg.com/news187634357.html

races of the green algae typically "accumulate hydrocarbons from to 30 percent to 40 percent of their dry weight, and are capable of obtaining hydrocarbon contents up to 86 percent of their dry weight.

The fuels derived from B. braunii hydrocarbons are chemically identical to gasoline, diesel and kerosene, "Devarenne said." Thus, we do not call them biodiesel or bio-gasoline; they are simply diesel and gasoline

Scientists do groundwork for genetic mapping of algae biofuel species
Using green algae to produce hydrocarbon oil for biofuel production is nothing new; nature has been doing so for millions of years, according to Texas AgriLife Research Scientist.

"Oils from the green algae Botryococcus braunii can be readily detected in petroleum deposits and coal deposits suggesting that B. braunii has been a contributor to developing these deposits and may be the major contributor, "said Dr. Timothy Devarenne, AgriLife Research scientist with the Texas A&M University department of biochemistry and biophysics . "This means that we are already using these oils to produce gasoline from petroleum."

It's not just a science trivia gee-whiz, Devarenne said. B. braunii is a prime candidate for biofuel production some races of the green algae typically "accumulate hydrocarbons from to 30 percent to 40 percent of their dry weight, and are capable of obtaining hydrocarbon contents up to 86 percent of their dry weight.

"As a group, algae may be the only photosynthetic organism capable of producing enough biofuel to meet transportation fuel demands."

Devarenne is part of a team of other scientists with AgriLife Research, the University of Kentucky and the University of Tokyo trying to understand more about B. braunii, including its genetic sequence and its family history.

"Without understanding how the cellular machinery of a given algae works on the molecular level, it won't be possible to improve characteristics such as oil production, faster growth rates or increased photosynthesis," Devarenne said.

Like most green algae, B. braunii is able OF PRODUCING great water equivalent of hydrocarbon oils in a very small land area.

B. braunii algae show promise Particular not Just Because of Their high output of oil goal aussi Because of the kind of oil They Produce, Devarenne said. While Many high-oil-producing algae create vegetable oils deviation, the oil from B. braunii, Known As botryococcenes, are similar to petroleum.

"The fuels derived from B. braunii hydrocarbons are chemically identical to gasoline, diesel and kerosene," Devarenne said. "Thus, we do not call them biodiesel or bio-gasoline; they are simply diesel and gasoline. To produce these fuels from B. braunii, the hydrocarbons are processed exactly the same as petroleum is processed and thus generates the exact same fuels. , these B. braunii hydrocarbons are a main constituent of petroleum. So there is no difference other than the millions of years petroleum spent underground. "

But, a shortcoming of B. braunii is its relatively slow growth rate. While the algae that produce 'vegetable-type' oils can double their growth every six to 12 hours, He Said.

"Thus, getting large amounts of oil from B. braunii is more time consuming and thus more costly," Devarenne said. "So, by knowing the genome sequence we can possibly identify genes involved in cell division and manipulate them to reduce the doubling rate."

Despite these characteristics and economic potential of algae, only six species of genetically modified organisms have fully sequenced and annotated, Devarenne said. And B. braunii is not one of the six.

B. braunii and sequencing its genome.

They are working the Berkeley strain of the B race of B. braunii, so named because it was first isolated at the University of California at Berkeley. The team has determined the genome size and an estimate of the race-guanine-cytosine content, both of which are essential to mapping the full genome, he said. There are also A and L breeds of B. braunii, but they were not looked at by the team.

Guanine-cytosine bonds are one of the basic peers composing DNA structure. Adenine-thymine is the other possible base pair.

"Genomes with high guanine-cytosine content can be difficult to sequence and knowing the guanine-cytosine content can help to assess the amount of resources needed for genome sequencing," Devarenne said.

The team determined B. braunii's genome size to be 166.2 ± 2.2 million base pairs, Devarenne said. The size of the human genome is about 3.1 billion base pairs. That of the house mouse is also about 3 billion base pairs. But the B. braunii genome size is larger than any of the other six previously sequenced green algae genomes.

The team also looked at the phylogenetic placement of B. braunii - where it belongs in the family tree of similar algae species. They may be known to be of the opinion that the genetics of B. braunii may be different from those of the genetics of humans. by another algal species.

To check this, they used a process called reverse transcription to isolate genes from a pure culture of the B race of B. braunii, and then to confirm the relationship of the race to other races of B. braunii.

"Our results support the original Berkeley DNA sequence used for phylogenetic placement was from a contaminating algae," Devarenne said. "And our study places the B race of B. braunii in the correct location on the 'algal family tree'."

The actual genome sequencing and mapping will be performed by DOE's Joint Genome Institute.

"We've submitted genomic DNA from B. braunii for JGI to use in sequencing, but that hasn't begun yet," he said.
0 x
Christophe
Moderator
Moderator
posts: 79323
Registration: 10/02/03, 14:06
Location: Greenhouse planet
x 11043




by Christophe » 17/01/12, 09:28

dedeleco wrote:We know the microalgae that make oil directly Botryococcus braunii known as a botryococcenes, which fill their bodies with oil with 85% of their dry weight, then buried in the ground, ideal for making oil, but they develop 8 times slower than other algae, which should allow them to be used in a little less rush


See concrete experiments here: https://www.econologie.com/forums/biocarbura ... t6787.html
0 x
dedeleco
Econologue expert
Econologue expert
posts: 9211
Registration: 16/01/10, 01:19
x 10




by dedeleco » 17/01/12, 14:35

I had not seen, toutotomatik disappeared, disgusted by disturbers (Elec) of econology who philosophize in a vacuum, as for the 100 empty pages of evolution and chance, of religious fact.
https://www.econologie.com/forums/post110330.html#110330
I have the impression that the galleys of microalgae are strongly linked to the obsession with yield to be improved endlessly, before doing anything !!

toutotomatik had the right approach, just cultivate and progress.

But it lacked a little basic knowledge with at the beginning facing north:
I just observed that they seem to develop better since:
-That they are at the foot of a [b] window facing south
.
-That I added a little urine to feed them.
-That my mother is the one wave every day. : - /

About the urine, I have no idea how much to add, it's experimental for now. This time I put 2.5mL of urine for 1/2 liter of culture. Later I will try to add more quickly! [/ B]
Christophe, can you say more about capturing CO2 in water. How do we do that? With lime, like in college?

He did not realize that the CO2 in lime water requires a lot of energy to make it start again, chemically, acid or thermally with return to lime. By reading wikipedia, he would have found all this information.

So in my opinion we can achieve at home simple, by seriously documenting, aiming for the simple and not being obsessed with high performance, instead of looking at the simple and cheap !!!

Chlorella is grown all by itself with humidity, like in any forgotten bottle, on the door of my garage to the north, etc.
But don't get stuck on performance.

To recover CO2 you need a compound with low attraction for CO2, as in the link I put, on the surface silica gel and polyethylenimine to see up close, with weak physical and chemical absorption and therefore not very energy-consuming to recover the CO2.


Finally, it is also simple to transform the plants thrown everywhere into oil, with the multitude of possible means indicated by Kaplan, also by not blocking the yield which will always be less good than burning this wood in a boiler, but without oil. for his car (except gasifier) ​​!!
0 x
User avatar
antoinet111
Grand Econologue
Grand Econologue
posts: 874
Registration: 19/02/06, 18:17
Location: 29 - Landivisiau
x 1




by antoinet111 » 19/01/12, 22:37

an example of a "domestic" bioreactor
http://www.instructables.com/id/the-alg ... wn-algae-/

: Idea:
0 x
I vote for the writing of concrete post and practicality.
Down the talkers and ceiling fans!
dedeleco
Econologue expert
Econologue expert
posts: 9211
Registration: 16/01/10, 01:19
x 10




by dedeleco » 19/01/12, 23:35

Cultivating with the right biotope is not a problem, if you are not looking for a very high yield, a pond is already working well or Breton algae with nitrates, without spending with lots of pipes to clean once the algae are fixed above especially tube junctions.
Bottles in the sun well shaken, with the good minerals of the biotope are much simpler and much less tiring !!

Reading scientific articles seems to me more essential, because they indicate the difficulties and solutions not indicated.
0 x
gentil33
I understand econologic
I understand econologic
posts: 64
Registration: 09/06/09, 09:17
Location: Bordeaux

little question




by gentil33 » 20/01/12, 09:09

How do we concentrate CO2 from the atmosphere?
0 x
moinsdewatt
Econologue expert
Econologue expert
posts: 5111
Registration: 28/09/09, 17:35
Location: Isére
x 554

Re: small question




by moinsdewatt » 21/01/12, 21:12

gentil33 wrote:How do we concentrate CO2 from the atmosphere?


No interest. It is better to capture the CO2 leaving the thermal power station using Gas or Coal.

BFS is located next to a cement plant, from which it captures the CO2 which is emitted during the cement manufacturing process.
0 x

Back to "biofuels, biofuels, biofuels, BtL, non-fossil alternative fuels ..."

Who is online ?

Users browsing this forum : No registered users and 119 guests